scheme are shown in the ORTEPII (Johnson, 1976) drawing in Fig. 1.

Related literature. The isolation of $\Delta^{8}-1^{\prime}, 2^{\prime}$-dihydro$3,4,3^{\prime}, 4^{\prime}$-bismethylenedioxy- 2^{\prime}-oxo-8.1-neolignan has been reported, along with a partial structure assignment based on NMR data (Green \& Wiemer, 1991). For a description of other work on the chemistry of Piper capense roots, see Green, Galinis \& Wiemer (1991).

We thank the Frasch Foundation for financial support.

References

De Titta, G. T., Edmonds, J. W., Langs, D. A. \& Hauptman, H. (1975). Acta Cryst. A31, 472-479.

Enraf-Nonius (1979). Structure Determination Package. EnrafNonius, Delft, The Netherlands.
Germain, G., Main, P. \& Woolfson, M. M. (1971). Acta Cryst. A27, 368-376.
Green, T. P., Galinis, D. L. \& Wiemer, D. F. (1991). Phytochemisty, 30, 1649-1652.
Green, T. P. \& Wiemer, D. F. (1991). Phytochemistry, 30, 37593752.

Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Killean, R. G. G. \& Lawrence, J. L. (1969). Acta Cryst. B25, 1750-1752.

Acta Cryst. (1993). C49, 772-774

1,1,4-Trimethylsilacyclohexan-4-ol

By Alvin Negron, Charles L. Barnes* and John A. Soderquist
Department of Chemistry, University of Puerto Rico, Rio Piedras, Puerto Rico 00931, USA

(Received 30 October 1991; accepted 11 September 1992)

Abstract

C}_{8} \mathrm{H}_{18} \mathrm{OSi}, M_{r}=158.32\), monoclinic, $C 2 / c$, $a=40.88$ (1),$\quad b=6.733$ (4),$\quad c=30.16$ (1) $\AA, \quad \beta=$ $132.08(3)^{\circ}, V=6161 \AA^{3}, Z=24, D_{x}=1.02 \mathrm{~g} \mathrm{~cm}^{-3}$, $\lambda(\operatorname{Mo} K \alpha)=0.71073 \AA, \quad \mu=1.68 \mathrm{~cm}^{-1}, \quad F(000)=$ 2112, $T=298 \mathrm{~K}, R=0.059, w R=0.049$ and $S=$ 1.71 for 4194 observed reflections. The three independent molecules, two in the more stable conformation with the OH axial and the third with the OH equatorial, form an infinite hydrogen-bonded helix.

Experimental. A colorless prism, $0.20 \times 0.25 \times$ 0.30 mm , was obtained by slow evaporation from methanol, and used for data collection on an EnrafNonius CAD-4 diffractometer with Mo $K \alpha$ radiation and $\omega-2 \theta$ scans to $2 \theta_{\max }=53^{\circ} .25$ reflections with 20 $<2 \theta<26^{\circ}$ were used for unit-cell determination. Space group was determined from systematic absences ($h k l, h+k$ odd; $h 0 l, l$ odd) and successful refinement. Three standard reflections measured after every 7200 s of X-ray exposure showed no deterioration. For $-49<h<38,0<k<8,0<l<37$, no redundant data were collected; a total of 6368 unique reflections were measured with 4149 observed [$I>$ $2 \sigma(I)]$. Data were corrected for Lorentz and polarization effects but not for absorption. The structure was solved by direct methods (Sheldrick, 1985). H

[^0]0108-2701/93/040772-03\$06.00
atoms were located on difference Fourier maps and refined with isotropic thermal parameters; non-H atoms were refined with anisotropic thermal parameters. Refinement was on F; function minimized during refinement was $\sum w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2}$, with $w=$ $4 F_{o}^{2}\left[\sigma^{2}(I)+\left(0.04 F_{o}^{2}\right)^{2}\right]^{-1} . R=0.059, w R=0.049$ and $S=1.71$ for the observed data and 487 parameters; $(\Delta / \sigma)_{\max }$ in final cycle was less than 2%; the final difference map showed maxima of $\pm 0.2 \mathrm{e} \AA^{-3}$. Atomic scattering factors and anomalous-dispersion corrections were obtained from International Tables for X-ray Crystallography (1974, Vol. IV). All calculations were performed with SHELX76 (Sheldrick, 1976).

Fig. 1. Perspective view of the three independent molecules with numbering scheme. Thermal ellipsoids are drawn at the 50% probability level.

Table 1. Positional and equivalent isotropic thermal parameters (\AA^{2})

$U_{\mathrm{eq}}=(1 / 3) \sum_{i} \sum_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.				
	x	y	z	$U_{\text {eq }}$
$\mathrm{Si}(A)$	0.15883 (03)	0.76408 (11)	0.40996 (3)	0.0466 (4)
$\mathrm{O}(A)$	0.1004 (1)	0.9666 (3)	0.2581 (1)	0.050 (1)
$\mathrm{C}(2 A)$	0.1053 (1)	0.6843 (4)	0.3370 (1)	0.057 (1)
$\mathrm{C}(3 A)$	0.0728 (1)	0.8564 (4)	0.3024 (1)	0.053 (1)
$\mathrm{C}(4 A)$	0.0895 (1)	1.0368 (3)	0.2921 (1)	0.043 (1)
$\mathrm{C}(5 A)$	0.1303 (1)	1.1302 (4)	0.3501 (1)	0.047 (1)
$\mathrm{C}(6 A)$	0.1709 (1)	0.9958 (4)	0.3896 (1)	0.053 (1)
$\mathrm{C}(7 A)$	0.1529 (2)	0.8188 (8)	0.4645 (2)	0.079 (2)
$\mathrm{C}(8$,	0.2020 (1)	0.5711 (6)	0.4425 (2)	0.075 (2)
$\mathrm{C}(9 A)$	0.0529 (1)	1.1910 (5)	0.2555 (2)	0.061 (2)
$\mathrm{Si}(B)$	0.04729 (2)	0.49201 (12)	0.43662 (3)	0.0520 (5)
$O(B)$	-0.0709 (1)	0.6501 (3)	0.3211 (1)	0.051 (1)
$\mathrm{C}(2 B)$	-0.0016 (1)	0.3948 (4)	0.4218 (2)	0.053 (1)
C(3B)	-0.0269 (1)	0.5597 (4)	0.4226 (1)	0.049 (1)
C(4B)	-0.0415 (1)	0.7334 (3)	0.3804 (1)	0.043 (1)
C(5B)	-0.0032 (1)	0.8378 (4)	0.3919 (1)	0.051 (1)
C (6B)	0.0241 (1)	0.7085 (5)	0.3854 (2)	0.055 (2)
$C(7 B)$	0.0898 (1)	0.5760 (8)	0.5157 (2)	0.080 (2)
$\mathrm{C}(8 B)$	0.0715 (2)	0.3033 (7)	0.4206 (3)	0.085 (3)
$\mathrm{C}(9 \mathrm{~B})$	-0.0664 (1)	0.8831 (5)	0.3862 (2)	0.065 (2)
$\mathrm{Si}(C)$	0.22842 (3)	0.82270 (13)	0.14244 (4)	0.0589 (5)
$\mathrm{O}(\mathrm{C})$	0.3771 (1)	0.7993 (3)	0.2758 (1)	0.055 (1)
$\mathrm{C}(2 \mathrm{C})$	0.2643 (1)	1.0430 (5)	0.1665 (2)	0.072 (2)
$\mathrm{C}(3 C)$	0.3119 (1)	0.9836 (5)	0.1997 (2)	0.063 (2)
$\mathrm{C}(4 \mathrm{C})$	0.3337 (1)	0.8459 (4)	0.2528 (1)	0.046 (1)
$\mathrm{C}(5 \mathrm{C})$	0.3105 (1)	0.6458 (4)	0.2347 (2)	0.057 (2)
$\mathrm{C}(6 \mathrm{C})$	0.2629 (1)	0.6561 (5)	0.2083 (2)	0.067 (2)
$\mathrm{C}(7 \mathrm{C})$	0.1760 (2)	0.8932 (10)	0.1223 (3)	0.098 (3)
$\mathrm{C}(8 \mathrm{C})$	0.2168 (2)	0.7017 (10)	0.0779 (2)	0.107 (3)
$\mathrm{C}(9 C)$	0.3386 (1)	0.9390 (8)	0.3026 (2)	0.083 (2)

Perspective drawings of the three independent molecules with the numbering scheme are given in Fig. 1 (Johnson, 1976). Final positional parameters for the non- H atoms are given in Table 1.* Bond lengths and angles and conformational angles are given in Table 2. Fig. 2 (Johnson, 1976) is a stereoview of the hydrogen-bonded helical structure generated by translation of the three crystallographically independent molecules along the short b axis. The $\mathrm{O} \cdots \mathrm{O}$ distances in the helix are $A \rightarrow B 2.799$ (5), $B \rightarrow C 2.841$ (5) and $A \rightarrow C 2.858$ (5) \AA.

Calculations of conformational energy were performed on the carbinol with the program $M M X$ (Serena Software, 1989) and are in excellent agreement with the $2: 1$ preference for the $\mathrm{Me}_{\text {eq }}, \mathrm{OH}_{\mathrm{ax}}$ (molecules A and B) over the less stable $\mathrm{Me}_{\mathrm{ax}}, \mathrm{OH}_{\mathrm{eq}}$ (molecule C) conformation ($\triangle M M X E=4 \mathrm{~kJ} \mathrm{~mol}^{-1}$). The average vicinal proton coupling constants, ${ }^{3} J_{\text {trans }}$ $=9$ and ${ }^{3} J_{c i s}=4 \mathrm{~Hz}$, which were determined from the 300 MHz NMR data on the title compound, were virtually identical to those calculated values from the $M M X$-minimized structures for both conformations. The use of Lambert's relationship (Lambert, 1971) from the measured NMR coupling constants results in a calculated torsional dihedral angle of 58.5°; the overall average crystallographic

[^1]Table 2. Bond distances (\AA), bond angles $\left({ }^{\circ}\right)$ and torsion angles $\left({ }^{\circ}\right)$

value is 55.8° and the overall $M M X$-calculated value is 56.4°. The good agreement between these calculated and experimental values for solid-state and solution environments for the silacyclohexyl system provides a firmer basis for understanding the significant conformation features of this interesting heterocyclic system.

Related literature. The title compound (m.p. $316-318 \mathrm{~K}$) was prepared in 84% yield from the addition of 1,1-dimethyl-1-silacyclohexan-4-one to methyllithium in diethyl ether at 351 K followed by an aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ quench at 298 K (Soderquist \& Negron, 1989). Analytical and spectroscopic data

Fig. 2. Stereoview of the hydrogen-bonded structure viewed normal to the b axis.
were obtained on the product which were wholly consistent with the assigned structure.

The EPSCoR program of the National Science Foundation is gratefully acknowledged for financial support.

References

Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Lambert, J. B. (1971). Acc. Chem. Res. 4, 87-94.
Serena Software (1989). PCMODEL. Version 4.0. Serena Software, Bloomington, IN 47402-3076, USA.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Sheldrick, G. M. (1985). SHELXS86. In Crystallographic Computing 3, edited by G. M. Sheldrick, C. Krüger \& R. Goddard, pp. 175-189. Oxford Univ. Press.
Soderquist, J. A. \& Negron, A. (1989). J. Org. Chem. 54, 2462-2464.

Acta Cryst. (1993). C49, 774-776

Structure of Galphimine B

By R. A. Toscano,* A. Ortega, E. Maldonado and R. Gaviño
Universidad Nacional Autónoma de México, Instituto de Quimica, \dagger México DF, Mexico

and X. Lozoya and J. Tortoriello

Div. Biol. Experimental, Unidad de Investigación Biomédica en Medicina Tradicional y Herbolaria, Instituto Mexicano del Seguro Social, Xochitepec Morelos, Mexico
(Received 11 October 1991; accepted 23 October 1992)

Abstract

R)-Trihydroxy-13 α-methoxycarbonyl30 -nor-3,4-seco-7 $\alpha, 18 \beta$-fridela-1,20-dien-3,24-olide methylene chloride solvate, $\mathrm{C}_{30} \mathrm{H}_{44} \mathrm{O}_{7} \cdot 0.898 \mathrm{CH}_{2} \mathrm{Cl}_{2}$, $M_{r}=601.6$, orthorhombic, $P 2_{1} 2_{1} 2_{1}, a=9.797$ (4), b $=15.039$ (7), $c=20.135$ (8) $\AA, V=2966.5$ (8) \AA^{3}, Z $=4, D_{x}=1.347 \mathrm{~g} \mathrm{~cm}^{-3}, \lambda(\mathrm{Cu} K \alpha)=1.54178 \AA, \mu$ $=23.66 \mathrm{~cm}^{-1}, F(000)=1288, T=298 \mathrm{~K}, R=0.062$ for 2004 reflections with $F>3 \sigma(F)$. In the pentacyclic molecule, rings C and D adopt a chair conformation while ring E shows a half-chair conformation (ring junctions: C / D, trans; $D / E, c i s$). The sevenmembered ring A and six-membered ring B are considerably distorted (twist and monoplanar conformations, respectively) which is reflected in the pseudo-trans A / B ring junction [torsion angles

^[* To whom correspondence should be addressed. \dagger Contribution No. 1146 of Instituto de Química, UNAM.]

- 11.3 (3) and $\left.1.3(3)^{\circ}\right]$ Intramolecular $\mathrm{O}(3)$ $\mathrm{H}(3) \cdots \mathrm{O}(4)[D-\mathrm{H} \quad 1.04(6), \mathrm{H} \cdots A \quad 1.72(6), D \cdots A$ $\left.2.720(8) \AA, D-H \cdots A 160(1)^{\circ}\right]$ and intermolecular $\mathrm{O}(4)-\mathrm{H}(4 a) \cdots \mathrm{O}(3)(x-0.5,1.5-y, 2-z)[D-\mathrm{H}$ 0.77 (7), $\mathrm{H} \cdots A 2.26$ (7), $D \cdots A 3.005$ (8) $\AA, D-\mathrm{H} \cdots A$ $\left.165(1)^{\circ}\right]$ hydrogen bonds stabilize the molecules in the crystal.

Experimental. The title compound was isolated from aerial parts of Galphymia glauca (Cav.) Kuntze. Crystallization from methanol-methylene chloride yielded a colorless single crystal of dimensions 0.26 $\times 0.30 \times 0.38 \mathrm{~mm}$. The unit-cell parameters were refined from least-squares analysis of 2θ values of 25 reflections from $7.35<2 \theta<23.93^{\circ}$. Intensities for 2183 reflections (2152 unique, $R_{\text {int }}=0.029$) having 3 $<2 \theta<110^{\circ}$ and $0<h<10,0<k<15,0<l<21$, were measured on a Nicolet $P 3 F$ diffractometer

[^0]: *Present address: Department of Chemistry, University of Missouri, Columbia, MO 65211, USA.

[^1]: * Lists of structure factors, anisotropic thermal parameters and H -atom parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 55679 (31 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: GR0205]

